Mœglin’s theorem and Goldie rank polynomials in Cartan type A

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Graded Version of Goldie ’ S Theorem

The analogue of Goldie's Theorem for prime rings is proved for rings graded by abelian groups, eliminating unnecessary additional hypotheses used in earlier versions.

متن کامل

A Remez-Type Theorem for Homogeneous Polynomials

Remez-type inequalities provide upper bounds for the uniform norms of polynomials p on given compact sets K, provided that |p(x)| ≤ 1 for every x ∈ K \E, where E is a subset of K of small measure. In this paper we prove sharp Remeztype inequalities for homogeneous polynomials on star-like surfaces in R. In particular, this covers the case of spherical polynomials (when d = 2 we deduce a result ...

متن کامل

Moufang Loops and Generalized Lie-cartan Theorem *

Generalized Lie-Cartan theorem for linear birepresentations of an analytic Moufang loop is considered. The commutation relations of the generators of the birepresentation are found. In particular, the Lie algebra of the multiplication group of the birepresentation is explicitly given. 2000 MSC: 20N05, 17D10, 20G05 Dedicated to Maks A. Akivis on the occasion of his 85th birthday and 65 years of ...

متن کامل

A New Clunie Type Theorem for Difference Polynomials

It is shown that if w(z) is a finite-order meromorphic solution of the equation H(z, w)P (z,w) = Q(z,w), where P (z,w) = P (z,w(z), w(z+c1), . . . , w(z+cn)), c1, . . . , cn ∈ C, is a homogeneous difference polynomial with meromorphic coefficients, and H(z, w) = H(z, w(z)) and Q(z,w) = Q(z,w(z)) are polynomials in w(z) with meromorphic coefficients having no common factors such that max{deg w (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2011

ISSN: 0010-437X,1570-5846

DOI: 10.1112/s0010437x11005653